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Connected graph representations of the quantum propagator 
and semiclassical expansions 

F H Molzahnt and T A Osborn 
Department of Physics, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2 

Received 24 June 1986, in final form 28 November 1986 

Abstract. The time evolution operator U( I, s) of a spinless non-relativistic N-body quantum 
system in Euclidean space with real analytic time-dependent scalar interaction v ( x ,  T) is 
studied. A complete formal asymptotic expansion involving simple connected graphs is 
derived for the full coordinate, and mixed coordinate-momentum representation propa- 
gators. The derivation is based on Dyson’s series for U( I, s), and the combinatorics involved 
in the cluster expansion of the classical grand partition function. These results provide an 
efficient means of generating non-perturbative propagator expansions in the physical 
variables: mass m, Planck’s constant h, time displacement t - s. The structural bridge 
between the WKB and Wigner-Kirkwood expansions is sketched for mixed representations 
of U ( t ,  s) .  In the heat equation context the graphical expansions are found for mixed 
representations of the density operator e-pH. Finally, an explicit differential formula is 
obtained for Wigner’s distribution function f ( x ,  p ;  p ) .  

1. Introduction 

In this paper we derive connected graph representations of the quantum time evolution 
operator. For the non-relativistic N-body problem, set in Euclidean space without 
boundaries and having interparticle interactions described by smooth bounded time- 
dependent scalar fields, the graphical solutions for the propagator are obtained in a 
variety of Dirac bases. Using these fundamental solutions of the Schrodinger evolution 
problem the two most interesting singular perturbation limits are investigated. In the 
limit of Planck’s constant h + 0 a restructuring of the connected graph representation 
is shown to yield the multi-dimensional WKB approximation complete with explicit 
formulae for all the higher-order coefficient functions. In a similar fashion the infinite 
mass limit, m +CO, leads to the generalised Wigner-Kirkwood expansion (valid for 
both time evolution kernels and heat kernels). The common features and universality 
of the connected graph representations of the propagators in different bases are 
described. 

The time-dependent Hamiltonian operator H (  r )  appropriate for this quantum 
system is defined by the differential expression 

Here m is the particle mass, h = 2 d 1  is Planck’s constant and the vector x E Rd ( d  = 3 N )  
describes the system configuration. The real parameter p is the coupling constant and 
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v : Rd+' + R is the potential energy of the system accounting for all interparticle forces 
as well as the interaction with any external sources. The scalar field v is assumed to 
be a real analytic function of x. The presumption of a common mass m for all particles 
represents no loss of generality since a change of coordinates can always transform 
the kinetic energy operator into the form appearing in (1.1). 

The dynamical evolution of this quantum system from an initial time s to a final 
time t is given by the operator-valued solution of 

a 
a t  i h -  U ( t , s ) =  H ( t ) U ( t , s )  (1.2) 

obeying the initial condition U ( s ,  s) = I (the identity). The evolution operator U ( t ,  s )  
is a unitary operator mapping the Hilbert space of L 2 ( R d )  functions onto itself. The 
quantum propagators we shall study are the following Dirac matrix elements of the 
evolution operator: ( X I  U (  t ,  s)ly), ( X I  U (  t ,  s ) l k ) ,  ( p i  U (  t ,  s)ly) and (p1 U (  t, s ) ( k ) .  Here 
x and y denote configuration variables, whereas p and k are momentum variables. 
The mathematical interpretation of these Dirac notations is that the above propagators 
are, respectively, the integral kernels of the operators U, US-',  SU and SUS-' (where 
U = U (  t, s) and S denotes the Fourier transform from spatial to momentum coordin- 
ates). We shall show that the first three of the above propagators have formal connected 
graph representations. 

These representations may be written in the following algebraically factored form. 
Suppose A t  = t - s  is the time displacement; then we find that 

( X I  U (  t ,  s)ly) = ( ihAt/m)-d' '  e x p ( ; G ( x - y ) '  F"(x, t ;y ,s)  (1.3a) 

k Z  
2m 

(xi U (  t ,  s)l k )  = h-d/2  ex(; (x  k -- At) )  F*(x, t ;  k, s) (1 .3b)  

P 2  (PI U (  f, s )Iy) = K d l 2  ex: (+ ( - y p - - A t  ) ) F # (  p ,  t ; y, s). ( 1.3 C )  
, r? 2m 

The functions written to the left of F", F* and F# are just the well known propagators 
for the free Hamiltonian H,,  defined by ( 1 . 1 )  with p = 0. In addition to the variables 
displayed in F", F* and F # ,  these functions also depend parametrically on p, h and m. 

The connected graph representations of the propagators in (1.3) are most simply 
described as exponentiated coupling constant expansions 

x 

Fo(x, t ;  y, s) =exp 

F*(x, t ;  k, s) = exp 

pnL:(x, t ;  y ,  s) 

p"L;(x, t ;  k, s) 

,I = 1 

x2 

n = l  

Lc 

F # ( P ,  t ;  Y, s) =exp C p n C ( p ,  t ;  Y, s). 
n = l  

( 1 . 4 ~ )  

(1.46) 

( 1 . 4 ~ )  

The coefficient functions L", L; and L z  (or generically L ; )  are independent of p, but 
still depend on h and m. In the following the functions L; will be explicitly determined 
by a type of connected graph sum. 

It is useful to state at the outset two of the important geometrical objects that enter 
the formulae for L; . For given initial and final times (s and t )  consider the classical 
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free evolution problem with one boundary condition imposed at each of these end- 
points. The absence of forces means that the classical path in coordinate space must 
be a straight line. The three two-point boundary value problems associated with (1.3) 
and (1.4) have trajectories given by (where T is the running time variable) 

(1.5a) 

p $ ( ~ )  = x + ( T - t ) u  u = k l m  (1.56) 

p r ( 7 )  = y + ( T  - S ) V  v = p / m .  ( 1 . 5 ~ )  

In the first of these paths the initial position y and the final position x are the given 
boundary condition data. In the second path, (1.56), the initial velocity U and the 
final position x are specified; and in the last path the initial position y and the final 
velocity U are given. 

A second basic ingredient that appears in the connected graph formulae for Li  is 
a class of one-dimensional Green functions. Let us scale the time variable T so that 
the linear paths in (1.5) are parametrised by the unit interval. To this end, define 
5 = ( T - s)/( t - s), [E [0,1] = I. Consider the Green function solutions of the unit 
interval equation, 

For each of the three different two-point boundary conditions given above, there is a 
related solution of (1.6). In particular, the Green function and its companion boundary 
conditions are: 

go(&, 5') = 5<(5< - 1) g"(0, 5') = 0 go( 195') = 0 (1.7~1) 

5') = -5, 

where 5, = max(6,t') and (< = min(5,t'). 
The final formula for Lj, is expressed in terms of pb and g' together with certain 

differential operators and a connected graph summation process. Absent from the list 
of possible cases in (1.3)-( 1.7) is the momentum representation propagator 
( P I  U ( t ,  s ) l k ) .  The special character of this propagator is readily apparent. The 
momenta k and p determine the initial and final velocities U and U. However for U # v 
there is no free linear trajectory with these different endpoint velocities. Similarly there 
is no Green function solution of (1.6) with vanishing 5 derivative at both endpoints 
Finally ( P I  U (  t ,  s ) l k )  is distribution valued (as is evident from the free problem) in 
contrast with the other propagators which are all ordinary functions if t # s. 

The derivation of the connected graph representation of the propagator has two 
basic stages. The first involves restructuring the coupling constant expansion of F' in 
such a way that the time-ordering restriction inherent in the original Dyson series 
expansion is removed. These results are described in 0 2 .  The second stage, presented 
in § 3 ,  shows how the coupling constant series can be exponentiated with a com- 
binatorial enumeration that is implemented with the connected graph method. An 
emphasis is given to describing the common analytical and geometrical features of 
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expansions (1.4). These results extend those developed earlier by Fujiwara et a1 (1982) 
wherein the heat kernel (xle-PHly) of the canonical density operator e-PH for inverse 
temperature p > 0 was represented as a connected graph sum. Our time evolution 
kernel representations reduce to those for the x, y heat kernel if the potential v ( x ,  t )  
is assumed to be static and t - s is replaced with hpl i .  

The formulae for L: have great utility because they may be used to generate 
expansions in the various physical parameters h, m-',  p and A t  (or p )  by summing 
over selective subclasses of the connected graphs. In 0 4 the h + 0 limit of the graphical 
sum is described and in this fashion the connection between the graphical sum and 
the WKB expansion for the three propagators ( X I  U ( t ,  s ) l y ) ,  (XI U ( t ,  s ) l k )  and 
( p i  U (  t, s ) l y )  is established. In addition it is indicated how the graphical solutions 
allow one to construct a corresponding explicit solution to the Hamilton-Jacobi 
equation. The large mass limit m-I + 0 is used to obtain the explicit form of the 
generalised Wigner-Kirkwood expansion. It is shown that the connected graph rep- 
resentation generates directly all the coefficient functions in the Wigner-Kirkwood 
expansion without the use of recurrence relations. As a final application we derive 
an explicit differential formula mapping the heat kernel into the Wigner function 
representation. 

The derivations leading to the connected graph representations are exact in that 
no approximations are made. However our analysis is heuristic in nature and in 
particular it is assumed throughout that the various series expansions have meaning 
and are at least asymptotic. It is worth mentioning some rigorous results which are 
known in this direction for bounded smooth potentials. Osborn (1984) has proved the 
asymptotic nature of the m + 00 and A t  + 0 expansions of the time evolution kernel, 
and of the h2/2m + 0 and p + 0 expansions of the heat kernel. The WKB approximation 
is similarly an h + 0 asymptotic expansion, as has been shown by Fujiwara (1980). 

We also expect the exponentiated forms ( 1 . 4 ~ - c )  of the propagators only to be 
valid for sufficiently short time displacements At. Formulae ( 1 . 4 ~ - c )  for F' are a 
consequence of a reorganisation of the coupling constant Dyson expansion for U (  t ,  s) .  
If the potential v (x ,  t )  is smooth and uniformly bounded then both the operator-valued 
Dyson series (2.2) and the associated coupling constant expansion of F'  converge 
absolutely for all p and t (Osborn and Fujiwara 1983). However exponentiating the 
coupling constant expansion of F' requires changing the order of a multiple summation. 
This step will introduce a restriction on the allowed values of At. The short-time 
limitation of representation ( 1 . 4 ~ )  is further characterised at the end of § 4.1, by an 
examination of the time behaviour in the solvable model of a d-dimensional harmonic 
oscillator potential. 

2. Symmetrised coupling constant expansions 

In this section we investigate the coupling constant expansion of each of the three 
distinct Dirac matrix elements of the evolution operator: ( X I  U ( t ,  s ) ( y ) ,  ( X I  U(?,  s ) lk )  
and (pI U (  t ,  s ) l y ) .  A basic goal is to introduce a permutation invariance into the 
coupling constant expansion which allows one to remove the time-ordering restriction. 
We give in detail the arguments needed to obtain the symmetrised expansion for the 
propagator ( X I  U( t, s)l k )  and then indicate the required modifications of the proof for 
the two additional cases. The momentum space propagator will be discussed at the 
end of 0 3. 
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It is convenient to denote the free evolution generated by Ho= -(h2/2m)V5 as 

Uo(t, s) = exp(-iAtH,/h). 

The operator-valued integral equation equivalent to Schrodinger's differential equation 
(1.2) with initial condition U ( s ,  s) = I is 

u(t,s)= U o ( t , s ) + -  d T U o ( t , ~ ) V ( ~ ) U ( ~ , s ) .  ilh I' 
Here V(T) is the operator obtained by multiplication with the scalar potential pv(x, 7 ) .  

A basic effect of the time dependence of the interaction V ( T )  is to cause U(t ,  s) to 
depend separately on t and s and not solely on the time displacement A t  = t - s. 

Successive iteration of (2.1) yields the time-ordered Dyson expansion 

J s  J s  J S  

x exp[-i( t - 7,)H0/ h]  V( T , )  exp[ - i ( T l  - 72)H0/ h l  V(72) . . . 
x exp[-i( T,-, - 7,,)H0/ h ]  V(T,,) exp[-i(T, - s)Ho/h].  (2.2) 

The operator-valued series (2.2) is the common starting point of the derivations of all 
four representations of the propagator. Consider the case of ( X I  U( t, s ) l k )  first. Begin 
by scaling out the trivial dependence on At. This is implemented by the change of 
variables = t - t j A t  for j = 1 - n. So (2.2) becomes 

d"f [exp(- i~lAtHo/h)V(t-5,At)  

xexp( i~ ,AtHo/h) ]x .  . .x[. .n. .]]  V o ( t , s ) .  (2.3) 

Two notations are introduced in (2.3). Let the n-tuple f = (t,, &, . . . , &)  be an 
arbitrary point in the unit n-cube I". The symbol Q: specifies the triangular region 
Q: = {g E I"I0S 5, s .  . . S 5" s 1). Furthermore, the notation [. .n . .] is an abbreviation 
for the first small square bracket operator in (2.3) with index 1 replaced by n. 

Taking the (xi.. .Ik) Dirac matrix element of (2.3) one finds 

xexp(-il,A,)] x . .  .x[..n..] (xlexp(-iAtHo/h)lk). 1 
Here lj = ( hAr/2m)tj, and the free propagator is 

(xlexp( -iAtHo/ h) lk )  = hVd'* exp 

(2.4) 

Inserting (2.5) into (2.4), the factors independent of x may be brought to the left 
of the differential operator {. . .} in (2.4). Consequently, the propagator admits the 
factorisation (1.3 b )  where 

x exp( - i l l A x ) ]  x . . . x [. .n. .] exp(ix k /  h) .  1 
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The next step is to move the right-most plane wave in (2.6) to the left. This is 
accomplished by using the formula 

(2.7a) 
in each of the n factors [. .j. .] in (2.6). Following this by a repeated use of the identity 
(for 4 E C") 
v(x+2i5VX, T) exp(ix. k / h ) 4 ( x )  = exp(ix - k/h)v(x  -25k/h +2i5VX, T ) ~ ( x )  

(2.76) 
allows the plane wave to be moved to the left. Thus one obtains the analogue of the 
representation found by Goldberger and Adams (1952) for the present case 

exp(i[A,)v(x, T )  exp(-ilA,) = v(x + 2i5VX, 7) 

OC p A t  
d"gv(x - 25, k l  h + 2i5,VX, t - &At) (x)' jQ: n = 1  

F*(x ,  t ;  k, s)  = 1 + C 

x . .  . x  v(x-25,klh+2i5,VX, t-&,At)l. (2.8) 
In spite of its relatively simple appearance formula (2.8) for F* is very complicated 
due to the presence of the gradient as an argument in the product of potentials. A 
simple variant of ( 2 . 7 ~ )  allows the j t h  factor of v in (2.8) to be replaced by 

(2.9) 
In the j =  n factor, the right exponential may be omitted since it acts on the 
constant 1. 

The next goal is to simplify the differential structure in (2.8) and to make the 
permutation dependence of the indices j = 1 - n more evident. We start by reorganising 
the differential structure arising from the Laplacians in (2.9). In order to do this we 
define a differential operator D J ( j =  1 - n )  which acts as a spatial gradient on the 
Rd-vector argument of the potential containing the index j. Specifically 

where 6, is the Kronecker delta symbol. A useful property of the operators (0,) is 
that they commute with each other. The gradient of a product of potentials takes the 
form ( I  G n) 

exp(ilJAx)v(x -25,k/h, t - ( " A t )  exp(-i&A,). 

D J v ( x L 9  ' j )  = sIJ(vv)(x,9 't) 

n 

v x  n v(x-25jk/h, T I ) =  C DJ n v(x-25Jk/fi, T J ) .  
J = f  (]I/ ) J : /  

Employing the operators DJ in (2.8) and (2.9) yields 

/ = 1  

where I A j = min{I, j }  and I v j  = max(1, j}. 
6: = 1 - &,+l-j (for j = 1 - n)  which gives, upon dropping the primes, 

Now make the change of variables 

(2.10) 
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The arguments of the potential v are the spacetime linear paths in Rd+'  parametrised 
by 61 E I :  

[T = ( x + ( &  - l)Atk/m, s + & A t )  l = l - n .  

Clearly the spatial component of .$ e[Wd x R  is just the free linear path p$(s+&At) ,  
whereas its time component varies from s to t.  

s 1 in (2.10) allows one 
to replace trVj - 1 by the Green function g*(tr ,  6) which has the advantage of being 
a symmetric function of its arguments for all (&, Q) E I * .  Thus (2.10) assumes the form 

Now observe that the ordering restriction Os t1 s .  . . s 

(2.11) F*(x,  t ;  k, s )  = ,Z;(X, / I n  t ;  k, s) 
n . 

where Z $  = 1, and for n 3 1 

Here we used the symmetry of g*(&,, tJ)D, * 0, under the interchange of i and j .  If 
n = 1 the sum Et<, = 0. Furthermore the quantity SX is defined by 

$35)  = ii fr*(x, t ;  k, s; 51) 
/ =  1 

where 

The integrand of (2.12) is invariant under any permutation of ( e , ,  &, . . . , 5") = 5. 
Hence 2: may be expressed as an integral over the unit cube I" without the factor n !, 

(2.13) ZX(X, t ;  k, s) = I," d"5 n [ 1 + a 3 5 ) 1 9 % )  
1 S I < J G f i  

where we have set 

(2.14) 

If n = 1 then n,,, = 1. The subtraction of -1 in the definition of a f  is natural in that 
it ensures that a f  + O  formally as hAt/m +O. Representation (2.11)-(2.14) achieves a 
spacetime linear path averaged form of the Dyson expansion for F* wherein the 
time-ordering restriction has been removed. 

The derivation just given for (XI U( t, s ) lk )  applies with evident modifications to the 
propagator ( X I  U (  t, s ) l y ) .  The analogous result for Fo(x, t ;  y ,  s )  can be expressed as 

where 
c 

(2.16) 
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The function SO, is the product of potentials and operators 

SO,(5) = I = 1  fi (~exp[(hAt/2im)go(51,  51)D?l462) 

where the appropriate spacetime path is 

T;=(Y+5r(x-Y), s+51At)  TI E I. 
The operators a i  (coupling index i to j )  are given by 

(2.17) 

where go is the Green function defined in ( 1 . 7 ~ ) .  The derivation of the symmetrised 
coupling constant expansion (2.15)-(2.18) for ( X I  U( t, s)(y) is similar to the expansion 
for (xle-PHly) and one may consult Fujiwara et a1 (1982) for additional details. 

A simple method for obtaining the symmetrised p expansion associated with the 
propagator ( P I  U (  t, s)ly) is to employ the relation 

(PIU(4 s ) l Y ) = m .  (2.19) 

This is a consequence of the self-adjoint nature of the Hamiltonian (1.1). Using (2.19) 
to translate the results of the case ( X I  U( t, s ) l k )  so as to determine F" gives 

(2.20) 

5 ) .  (2.21) 

where the spacetime path is 

r: = (Y + W P /  m, s + 51At) 51 E 1. 

The operators U ;  are found to be 

It is of particular interest to note that in all three cases = 0 ,  * and # lead to coupling 
constant coefficients Zi ,  equations (2.13), (2.16) and (2.21) that have the same operator- 
combinatoric structure. 

3. Connected graph exponentiation 

Certain common combinatorial features of the coupling constant expansions of F", 
F* and F" are characterised in this section. We explain how these features enable 
one to exponentiate the p-series expansion of F' in terms of coefficient functions 
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defined by connected graphs. The underlying combinatorics is just that involved in 
the cluster expansion of the classical grand partition function (Hill 1956). The generic 
expansion function 2; found in (2.13), (2.16) and (2.21) has the universal form 

r 

(3.1) 

and as in 0 1 may be 0 ,  * or # .  
The critical properties of the operators 
( a )  ab(&) depends only on ti,&; 
( b )  ah(&) = aii(&), all i, j ;  
(c) the & integration region is the Cartesian product I"  = [0,1] x . . . x [0,1] ( n  

( d )  the operators a,(&) commute for all i, j and for all & E  I". 
Recall first the following notation for graphs. The pair G = (A ,  E )  is called a simple 

graph if A (the vertex set) is a non-empty finite collection of distinct integers, and E 
(the edge set) consists of distinct unordered pairs 

are: 

factors); 

a = {i , , . j ,}  i,,.i, E A i ,  # j , .  

Elements of the vertex and edge sets will be called vertices and links, respectively. 
The term simple emphasises that a pair of vertices may have at most one link between 
them and that a vertex may not be connected to itself by a link. The fact that a link 
is defined as an unordered pair means that links are not directed. For more details 
concerning this graph terminology see Wilson (1975). 

A simple graph will be called a cluster if it is also connected, i.e. there is an unbroken 
pathway of links between every pair of vertices. There are many ways to form a cluster 
over a given vertex set A, if its cardinality ] A l a  3. This arises because clusters may 
differ in structure, e.g. 

or they may differ in labelling, 

We denote by %(A) the set of all clusters formed on the vertex set A. The cluster 
concept is useful because we shall associate with each cluster C = (A, E )  the differential 
operator n a p E  ah. Furthermore, a given vertex set A induces a natural cluster sum 
SA, defined as follows. The cluster sum SA is the sum, with unit weighting, of the 
operators associated with all possible distinct clusters formed over A, that is 

S A E  1 a i .  
C E V ( A )  o e E  

For example if A = { 1,2,3} then 

S A  = a ; * ~ ; ~ +  a;3a;3+ a ; 2 ~ ; 3 +  ~ ; ~ a ; ~ a ; , .  

In the case where IAJ = 2, such as A = {1,2}, there is only one cluster, so SA = a i 2 .  If 
IAl= 1 then SA is defined as unity. 

A partition of the set 1 - n = { 1, . . , n }  into non-empty disjoint subsets A, is called 
a decomposition 9 = { A , }  of 1 - n. Specifically, it is required that A, # 0, A, fl A,. = 0 
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( A  # A ' )  and 1 - n = U , A,. Associated with each decomposition 9 = {A,}  of 1 - n is 
a cluster product 

We now describe the structure of 2; using this graph terminology. The basic 
combinatorial feature of (3.1) is the product over a;,. Thus 

n (1 +a;,) = 1 + 2 a,+ aj;a;,+. . .+ ( a ; 2 4 ; 3 , .  . a ; - l , n ) .  
I z s i < j s n  t < j  i < j , k < l  

g #  kl 

(3.2) 

Each term of (3.2) may be associated with an n-vertex simple graph G = (1 - n, E )  
where a link { i , j }  occurs in the edge set E if and only if ij is a subscript of one of the 
factors a' in the term. Property ( b )  implies that the link is not directed. There is at 
most one link between any two vertices since each pair i, j occurs only once in the 
product (3.2). Conversely, each simple graph G represents a term in (3.2) because for 
each link { i , j } ~  E a factor a;, can be selected from the left-hand side of (3.2) and for 
each pair { k ,  Z}E E the corresponding 1 from (1 + a i l )  may be selected. 

Every cluster product P ( 9 )  represents a number of terms in (3.2). In particular, 
if 9 = {A, A', . . . , A"} with associated vertex sets A = { i ,  . . . , k } ,  A'= { i ' ,  , . . , k'} ,  etc, 
then P( 9) contains all the terms of (3.2) such that the vertices i,j, . . . , k form a cluster, 
i ' ,  j ' ,  . . . , k' form a cluster, etc. By varying 9 over all allowed decompositions of 1 - n 
and summing the P(9)  one obtains precisely all the terms of (3.2), so 

In order to understand the complete relationship between simple graphs and the 
integrals in (3.1) observe that the operator (3.3) is to be applied to the product of 
functions II:=, f,', and then integrated over jltl dng. Properties ( a ) - ( d )  show that this 
integral factors into a product over its component clusters. Note that the functions f ,' 
are to be associated with the vertices i and ab with the link between i and j .  Thus 
with each cluster C = (A,  E ) ,  A = { i , j ,  . . . , k } ,  we identify the integral 

Based on the vertex set 1 - j  obtained by relabelling the integration variables above, 
one defines the cluster integral of order j by 

This notation lets us write for each decomposition 9 = {A, A', . . . , A"} of 1 - n 

(3.4) 
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where mj = m j ( 9 )  5 0 is the number of connected subsets of cardinality j in 9. 
Obviously decomposition 9 satisfies the constraint 

n 
jm, = n. 

j = 1  

Taken together equations (3.1), (3.3) and (3.5) give 

(3.6) 

(3.7) 

For a given set m = ( m , ,  m , ,  . . . , m , )  obeying constraint (3.6) there are a variety of 
decompositions 9 all satisfying m(9) = m, and their contributions to Zl, will be the 
same (since their corresponding integrals are identical). So (3.7) may be recast as 

where the superscript ( n )  on the sum means the allowed values of m are subject to 
constraint (3.6). Here N ( m )  is the number of decompositions 9 of 1 - n consistent 
with a given m. The determination of N ( m )  is the counting problem of placing n 
objects into boxes, with mj boxes each holding j objects. The number of ways to do 
this is n !  divided by rIy=l ( j!)"'imj!. With this value for N ( m ) ,  Zl, takes the form 

and Zb is 1 .  

(2.15) and (2.20) have the common structure 
In order to complete the coupling constant exponentiation of F' recall that (2.1 l ) ,  

Substituting (3.8) into (3.9) yields 

where X") = 1 .  The double summation here can be reinterpreted as the sum over all 
mj( j 3 1) without the restriction (3.6). Thus, provided one may interchange the order 
of summation over n and m, it follows that 

F ' = e x p  pJL; . 
( J : l  

(3.10) 

The final form of interest for F' is obtained by expanding the operators Lj in the 
physical parameter h / m .  Recall that from (2.141, (2.18) and (2.23) we have for link 
{ i ,  j }  the associated series 

(3.11) 



3084 F H Molzahn and T A  Osborn 

Using expansion (3.11) for every link in the edge sets which occur in S{l,,,,j) of the 
cluster integral (3.4) lets us write Lj as a sum in which the analytic dependence on fi ,  
m and A t  is made explicit. 

We first define the auxiliary quantities 

b',(S) = g ' ( 6 , ,  fj,)Di, * Dj, 
j 

c;(S) = g * ( t i ,  6i)Oi * Di 
i = l  

r =  I ,  
U S E  

wh re Q = {i,, ja}  is a member of some edge set E. Furthermore we introduce 
summation convention Yij. Write each cluster C E %( 1 - j) as C = ( 1  - j, E). The sum 
9 is defined as 

e= 9, Ce'B(1- j )  c ( n  a e E  ] , = I  ?)*  
Then (3.4) becomes 

(3.12) 

If j = 1 then r = 0 and the empty product nuSE is 1 .  Of course expansion (3.12) of 
the cluster integral L; is valid for any of the three Dirac representations investigated 
in 8 2, i.e. . = 0, *, # . In addition, note that the integrals over domain I' in (3.12) are 
functions which are independent of the physical parameters p and f i .  If - = 0 they are 
free of m; if also v is time independent they are free of t, s. Formula (3.12) is the 
principal result of this paper. 

The A r  behaviour of L; is explicitly displayed in (3.12). Since r z - j - 1 ,  it is seen 
that L; obeys the order estimate 

L; = O((Af)2J-1( m ) - ( J - ' )  ) j2 1 .  

Of course there is a time dependence in the spacetime path 5;. However this appears 
only in the argument of v and will not affect the estimate for L;. Because L; decreases 
as (At)"-'  we can expect that the interchange of summation that leads to (3.10) is 
valid if A t  is sufficiently small. 

We conclude this section with a discussion of the momentum space propagator 
( p i  U (  f ,  s ) lk) .  In seeking an exponentiated coupling constant expansion of ( p (  U( t, s ) lk )  
the first step is to obtain a symmetrised version of the Dyson series (2.2) in the Dirac 
basis (p J  . . . Ik). Proceeding as in 9 2, it is found that 

(3.13) 1 ( p I U ( t , s ) l k ) = e x p ( - i A r p 2 / 2 m f i )  
n = l  

where 

B, = h - d  dy exp[-i(p-k) . y / h ] ( l [  dn& I dp, . . . I dp, 
n .  ,n 

(3.14) 
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The functions a ;  and f; are given by 

) i b  t f;(tl,  P I ,  Y 1 = exp iy * P I /  h += t ~ ,  - ( P -4~1) $(PI, s + t J t )  ( 
where 3 is the Fourier transform of U, p $ ( p - p ’ ,  ~ ) = ( p I v ( ~ ) l p ’ ) .  In formula (3.14) 
for B, the integration over variables p ,  , . . . , pn comes from introducing complete sets 
of momentum states in evaluating the operator product of the original Dyson series. 
The y integral comes from replacing an overall momentum conserving delta function 
S ( p  - k-?  ;=l p r )  by its Fourier integral equivalent. 

If one interchanges the n-summation with y integration then 

(pIU( t ,  ~ ) l k ) = e x p ( - i A t p ~ / 2 m h ) h - ~  dy exp[-i(p-k) y / h ]  I 
(3.15) 

From the preceding analysis in this section it is evident that we can obtain for each 
value of y a connected graph exponential representation of the quantity inside the 
curly brackets of (3.15). However the usefulness of this graphical exponentiation is 
diminished by the necessity of integrating over all configurations y. In fact the 
exponentiation of (3.15) leads to the same result one obtains in passing from 
( p i  U(?,  s)ly) to ( p l U ( t ,  s)lk) by Fourier transforming, namely 

( P I  U ( t ,  s)lk) = 1 dy(pl U ( t ,  s)ly)(ylk) 

= h - d  I dy exp; ( ( p  - k )  

= h-d  exp(-ibtp2/2mh) dy I 
00 

x exp(: ( p - k )  y + c p j ~ j + ( p ,  t ;  y, SI) .  (3.16) 

Thus graphically exponentiating (3.15) has not yielded a result that is independent of 
the graph representation (3.10) with * = # . 

This conclusion is in marked contrast with the behaviour of the previous three 
cases = 0,  * and # . Observe that in (1.3) each representation is in the form of an 
algebraically factored product of F’ times the free propagator. If one attempts to pass 
from the coordinate to a mixed representation in (1.3) one cannot proceed easily via 
a Fourier transform, since the Fourier transform of an algebraic product is a convol- 
ution, and not another algebraic product. 

j = 1  
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4. Applications 

The graphically exponentiated coupling constant series (3.10) and (3.12) provides us 
with an exact solution of the Schrodinger time-evolution problem in the three bases 
. = 0 ,  *, # . However the formulae (3.12) for the coefficients L' are far too complicated 
to be explicitly summed for an arbitrary smooth potential Y ( X ,  t ) .  For example the 
number of different connected graphs with cardinality 4, 5 ,  6 and 7 is respectively 38, 
728, 26204 and 1866256 (Harary and Palmer 1973). Only for exceptionally simple 
interactions such as the d-dimensional harmonic oscillator is it possible to carry out 
the sum (3.10) in closed form. 

In spite of the difficulties mentioned in the preceding paragraph, expansions 
(3.10)-(3.12) do have a useful range of applications. Their utility arises from two 
features. The first is that all of the analytic dependence on the physical parameters 
p, h and m is stated explicitly in (3.12). The second is that many applications do not 
require the computation of all the cluster integrals in L;, but rather a smaller subset 
of graphs. 

We sketch in this section two particular applications of representation (3.10). For 
the mixed propagator ( X I  U (  t, s ) l k )  we establish how one may extract the higher-order 
WKB approximation from (3.10). In a second application, it is assumed that the potential 
is static and we derive the form of the Wigner-Kirkwood expansion for the mixed 
representation heat kernel (xle-@" I k) .  In these examples, we have chosen to discuss 
the mixed kernel representations since they are not often discussed in the literature. 
Similar applications are valid for the more familiar x, y coordinate kernels. The final 
topic of the section concerns the map from the Dirac basis of the density operator 
e-'" to the phase space basis found in the Wigner distribution. In this way we can 
extend the various asymptotic expansions for small h, m-',  p or A t  to the Wigner-Weyl 
representation. 

4.1. Comparisons with W K B  

Consider the form assumed by the small A t  WKB approximation for ( X I  U (  t, s ) ( k ) .  
From the partial differential equation (PDE) perspective (XI U(t ,  s ) ( k )  is the fundamental 
solution of the time-dependent Schrodinger equation 

a hZ ( a t  2m 
-ih---Ax+pv(x, t )  (4.1) 

subject to the non-singular initial condition 

(xlU(t, s ) l k ) +  h - d / 2  e ix'k'* (4.2) 

as t + s. The WKB approximation for ( X I  U (  t ,  s ) ( k )  is obtained from the ansatz 

(xlU(t, s ) ( k ) =  h-d/2exp[(i/h)S*(x, t ;  k, s ) + A * ( x ,  t ;  k, s)] (4.3) 

where S* is independent of h and real-valued, while the complex-valued A* = O( ho)  
as h + 0, and A*+O as t +  s. Ansatz (4.3) is essentially a statement of the analytic 
form that ( X I  U ( t ,  s ) lk )  takes in the neighbourhood of f i  = 0 for sufficiently small time 
displacements (Fujiwara 1980). 



Graph representations of the quantum propagator 3087 

Substituting (4.3) into (4.1) and equating to zero the lowest-order coefficient of h 
leads to the usual requirement that S* solve the Hamilton-Jacobi equation, 

1 
2m 

dlS*(x, t ;  k, s ) + - I V , S * ( x ,  t ;  k, s ) l * + p v ( x ,  r ) = O .  (4.4) 

The notations a, and V i  will denote the time derivative and the Rd gradient, respectively, 
of the ith spacetime argument of a function. The initial condition (4.2) leads to the 
requirement 

S*(X, t ;  ~ , s ) + x .  k t - s. (4.5) 

It can be shown (Molzahn 1986) that the appropriate solution of (4.4) and (4.5) is 
given by the Legendre transformation of the classical action 

S*(X, t ;  k, s )  = k 9 q * ( s )  + dT L(q*(  T ) ,  q*( T ) ,  T )  (4.6) 5,' 
where L ( x ,  1, t )  =$mx2 - p v ( x ,  t )  is the Lagrangian of the physical system ( 1 . 1 )  and 
q* = q*( . ; x, t ;  U, s)  is the classical path that obeys Newton's equation together with 
the two-point boundary condition 

q * ( s ) =  U = k/m q*( t )  = x. 

Our formalism assumes that a unique path q* exists given any U, x and a sufficiently 
small At, for smooth bounded potentials v ( x ,  t ) .  

Given S*,  the higher-order W K B  approximation determines A* in terms of an 
ascending series expansion in h, namely 

a 

A*(x, t ;  k, s )  = (ih)P-'.Az(x, t ;  k, s). 
p 2 1  

(4.7) 

The Ap* are h independent and must satisfy 

Ap*(x, s; k, s )  = 0 (4.8) 
in order that A*+O as t - s + O .  Differential equations for A,* are determined by 
substituting (4.3) and (4.7) into Schrodinger's equation (4.1) and equating the 
coefficients of common powers of h. In this way one obtains the recursive set of PDE 

for A;( p 3 1 ) :  

(4.9) 

Here A t  = S*l,=,, - S* and if p = 1 the sum is absent. The non-interacting S* is easily 
found from (4.6) to be 

A t  
2m 

S*(X, t ;  k, S ) I ~ = ~ =  k .  X - - -  k- .  

Explicit solutions of (4.9) for .If may be constructed if the wlte-transport method 
(Birkhoff 1933, Maslov and Fedoriuk 1981) is employed. First replace x, t in (4.9) by 
q * ( ~ ) ,  T. Next, with the aid of Jacobi's theorem (Gelfand and Fomin 1963), it may 
be shown that V I S *  = mq*. Thus the left-hand side of (4.9) equals the total derivative 
dS*(q*(T), T ;  k, s)/dT. Then integrating over T E  (s, t )  subject to condition (4.8) yields 

1 P - 1  
Ap*(x, t ;  k, s )  =- 1,' d r (  A,Ap*-, + 1 V1Ap*-,  . O, \Z ) (q * ( r ) ,  T ;  k, s). 

2m n = l  
(4.10) 
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Equations (4.10) provide integral recursion relations determining all A:. Note that 
A,* is known (given q * )  and that the right-hand side of (4.10) only contains A: for n < p .  

Having completed a summary of the higher-order W K B  approximation of the 
propagator ( X I  U (  t ,  s)l k ) ,  let us compare it with the connected graph expansion of 0 3. 
The WKB formula can be written 

( ~ l U ( t , s ) l k ) = h - ~ ” e x p -  

The first two factors on the right-hand side of (4.11) are just the free propagator, so 
the second exponential may be identified with F*(x, t ;  k, s). Thus (3.10) and (4.11) 
taken together are consistent if 

2 (ih)p-lAF(x, t ;  k, s) = pJL7(x, t ;  k, s). 
p=O ] = I  

(4.12) 

A first application of (4.12) is obtained by observing that formula (3.12) with - = * 
allows L,?: to be expressed as a Laurent series in h with lowest power h-’. The 
coefficients in this series naturally involve subclasses of graphs from %( 1 - j ) .  Putting 
(3.12) into (4.12) and comparing powers of h then yields graphical formulae for the 
quantities A: (which were determined above using classical mechanics). 

For example consider the subclass of graphs that determines S*. The portions of 
Lj* having h dependence h-’ are those terms in expansion (3.12) with n + r - j =  -1 .  
Since r 3j - 1 on a j-vertex edge set, the condition n + r - j = -1  requires n = 0 and 
r = j  - 1 .  This latter equality implies the condition that the class of j-vertex connected 
graphs are tree graphs (the minimally connected family of graphs on the vertex set 
1 - j). Thus it turns out that S* may be expressed as a sum over tree graphs and this 
sum provides a constructive series solution S* to the Hamilton-Jacobi equation. We 
will not pursue this application in detail, but remark that in Molzahn and Osborn 
(1986) similar reasoning applied to the x, y case yielded a rigorous explicit description 
of the classical action S(x, t ;  y, s) for a suitable class of potentials. 

Let us continue to investigate the structural consistency between the graphical and 
classical mechanical representations of A;, p 3 1 .  If we replace k = mu, then the linear 
path 5* carries no mass dependence. Using formula (3.12) with = *, it is seen that 
(4.12) implies 

OD 

A:(x, t ;  mu, s) = c m-‘Gp*’(x, t ;  U, s). 
/ = p  

(4.13) 

The coefficients Gp*’ are mass independent and are determined by the subclass of 
graphs defined by n + r - j = p - 1 ,  and n + r = l .  

A second derivation of expansion (4.13) that is independent of the consistency 
condition (4.12) is the following. Consider the behaviour in m of A,* that is implied 
by (4.10). The mass dependence of Ap* arises from two mechanisms. The first is the 
explicit mass dependence in (4.10). The second is the implicit mass dependence found 
in q* .  Expand q* in the form 

(4.14) 

where coefficients p; : [s, t ]  + Rd are mass independent. The leading term pg is the 
free path (1.5b) which satisfies the same boundary conditions as q* .  
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The higher terms p T ( j  2 1 )  have zero initial velocity and zero final configuration. 
They may be determined recursively using the one-dimensional Green function 
g*( [ ,  t‘), equation (1.76). For example one obtains 

p T ( s + 5 A t )  = - W 2 p  Io’ d5l g*(& & ) V 4 5 T ) .  (4.15) 

If we write (4.14) in the form q* = p$ + T * ,  then a short calculation shows that (4.6) 
can be written in terms of A$ and q* (rather than S* and q * )  

(4.16) 

Upon inserting T*  =E?==, m-JpT into (4.16) it is straightforward to find the m-’ 
expansion of A$. If the T integral in (4.16) is scaled to the unit interval by setting 
T = s + [ A t ,  and if formulae like (4.15) are used for pi*, then it is found that the resulting 
m-’ expansion agrees with the graphical formula (4.13) (with p = 0) term by term. In 
particular, notice that the mass-free spacetime argument becomes t* = ( p $ ( ~ ) ,  T). 

Similarly, an m-’ expansion of (4.10) based on (4.14) allows a term by term verification 
of the graphical series (4.13) for A:, p 2  1. 

A discussion similar to the above may also be given for ( p i  U (  t, s)ly). In this case, 
one should begin with the ‘backward’ Schrodinger equation 

and then derive the associated higher-order WKB expansion using the transport method. 
The relevant classical path is q#(  ; p ,  t ;  y, s) which in the free-motion or infinite mass 
limits reduces to PO# of ( 1 . 5 ~ ) .  The associated Green function is g # ( &  5‘) given by ( 1 . 7 ~ ) .  

In summary, we have demonstrated that for mixed representation propagators for 
the Hamiltonian system ( l . l ) ,  the mutual consistency and structural connection between 
the higher-order W K B  and the graphical representations is realised by a large mass 
expansion. This is the joint result of a large-mass expansion of the relevant classical 
path (4* or q # )  and the transport recurrence identities for the W K B  correction terms 
(A: or A,”). 

The geometrical origin of the averages over the linear paths [* and 5” in (3.12) 
lies in the m +CO expansion of 4’ about the linear trajectory pb. The weight factors 
g* and g #  appearing in operators bk and c; in (3.12) arise as Green functions for the 
boundary conditions that define the acceptable solutions of Newton’s equation in each 
case (see also Osborn and Molzahn (1986)). 

Notice that our derivation of (4.12) relied on the fact that the right-hand side of 
equation (4.3) has only one term. For larger At, there may exist many classical paths 
q* satisfying the two-point boundary conditions. Then (4.3) would be replaced by a 
sum of similar terms (one for each path) having relative phases determined by the 
Maslov index of the path. That equation (4.11) is not in the form of such a sum is 
consistent with its validity only within some limited region of small At,  

The small At  restriction implicit in our analysis can be further clarified by examining 
the behaviour of a solvable model. Consider the d-dimensional harmonic oscillator 
defined by the Hamiltonian 

A 2  
2 ri 

H = - - V ? + p x .  
2m 
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Setting y = (2p/m)"' the function F"(x, t ;  y, s) defined by ( 1 . 3 ~ )  assumes the well 
known closed form 

Fo(X, CY,  ~ ) = ( ~ ) ~ ' ~ e x p ( ~ [ ( X ~ + y ~ ) ( y A t  cot ? A t - 1 )  

- 2 x .  y(  y A t  cosec yAr - l ) ]  . ) 
The exponentiated coupling constant expansion ( 1 . 4 ~ )  with L",x, t ;  y, s )  given by 

(3.12) with = o  should also construct this same function F"(x, t ;  y, s) .  The analysis 
of the cluster integral L,"(x, t ;  y, s )  is particularly simple in this case since most cluster 
integrals turn out to be zero. Because the harmonic oscillator potential supports only 
two derivatives with respect to x, the non-vanishing clusters of order j must be such 
that each vertex has a maximum of two links attached to it. As a consequence only 
two non-isomorphic types of clusters contribute to L;. If the vertices are arranged in 
a circle, then one possibility is a j-sided polygon-with each side corresponding to a 
link. The second distinct class of graphs is obtained if one of the links in the polygon 
is removed. In Fujiwara er a1 (1982) the values of all these graphs for the harmonic 
oscillator are computed and  the series ( 1 . 4 ~ )  is shown to converge (uniformly in x 
and  y )  to the expression above for F0(x, t ;  y, s )  provided that the time displacement 
satisfies 

lA t l<  TI Y. 
Now consider the location of the first caustic as one increases A t  for fixed x and  

y. The Van Vleck determinant for the harmonic oscillator is easily computed in terms 
of the action S 

The classical evolution problem encounters multiple trajectories whenever this deter- 
minant is infinite. This occurs if yAt  = f n r  ( n  = 1 , 2 , 3 , .  . .). Thus it is seen that the 
caustic point for n = *l lies on the boundary of the radius of convergence of series 
( 1 . 4 ~ ) .  As this example illustrates, one cannot expect to obtain the large A t  behaviour 
of the quantum system from expansion ( 1 . 4 ~ ) .  This limitation also excludes the 
possibility of determining the Maslov index for classical paths associated with the 
quantum solution ( 1 . 4 ~ ) .  In addition bound-state energies are A i  = CO properties of 
the system and  also are not determined by expansion ( 1 . 4 ~ ) .  

4.2. Mixed representation of e-PH 

The generalised Wigner-Kirkwood expansion for evolution kernels is understood to 
be (Osborn 1984, Osborn and  Molzahn 1986) the large mass expansion of F' for =o, 

* and # . The conventional Wigner-Kirkwood expansions for kernels of the canonical 
density operator e-PH (Wigner 1932, Kirkwood 1933, Fujiwara et a1 1982, Boll6 and  
Roekaerts 1985) result if v is assumed to be static and  one makes the formal analytic 
continuation defined by A t  = h p / i  where P is the inverse temperature. Graphical 
expansions for (xle-PHly) are discussed in detail in Fujiwara er a1 (1982) so we confine 
our discussion to the cases . = * and # .  

Write the x, k mixed representation of e-PH as 
(xle-PHjk)=(xlk) e-pk"2mF* ( x 9 k ;  P, q, h )  
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where q = h2/2m. The expansion (3.10)-(3.12) becomes 

log F*(x, k; P ,  q, h )  = pJ ( - p ) J + n + r q n + r  
j = l  9) n = O  j ! n !  

(4.17) 

Some comments about (4.17) are necessary. The argument of the potentials is now 
just the spatial part of .$, but because of the replacement of A t  it becomes 

2i t? = x + <  Pqk(1- 51). (4.18) 

Notice that (4.18) is a complex vector. Nevertheless (4.17) is meaningful because of 
the assumed real-analytic (Fleming 1977) nature of v. Finally, observe that F* in 
(4.17) has an explicit dependence on h (i.e. other than that found in q )  which arises 
because of the h dependence of (4.18). This h dependence may be traced back to the 
h-dependent Fourier transform relating Iy) to Ik), and the fact that (x(e-PHly) depends 
on h only via the factor q. 

Often one desires to expand F* in powers of h, P or 6’. In these cases it is clear 
that a Taylor expansion of .(e:) about v ( x )  must be made in each of the j factors of 
v in (4.17). (Such a complication is not present for F0(x, y; P, q) . )  Doing this, one 
obtains the formal result 

log F*(x ,  k; PI 9, h )  

(4.19) 

In (4.19), it is understood that, after DI acts on v(xI), then xI is set equal to x. 
One use of (4.19) is the following. Several authors (Uhlenbeck and Beth 1936, 

Jennings et a1 1975) found it convenient to study the function w(x, k; P )  defined by 

4% k; P )  (xle-PHJk) = h - d / 2  e i x . k / h  e-PHc(k,x) 

where H ,  = k2/2m + pv(x)  is the classical Hamiltonian. It is evident that 

w(x, k; P )  =ePrY(X)F*(x, k; P, q, h ) .  

The j = 1, n = 0 term in (4.19) shows that F* contains a compensating factor e-Pr”(x), 
so it becomes possible to use the graphical representation (4.19) to write down 
expansions of w such as 

W(X, k ; p ) = l + h w , ( x ,  k ;P )+h2w2(x ,  k ; P ) + .  

In particular, formulae for the coefficients w, result directly from (4.19). Thus the need 
to determine wi by solving the tedious differential recurrence relations they obey is 
eliminated. 
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4.3. Wigner distribution function 

The third and last of our applications concerns Wigner functions. The widely studied 
Wigner method in quantum statistical mechanics (de Groot and Suttorp 1972) is based 
on an integral transform which maps quantum operators A into functions A,(x, p )  of 
classical phase space variables. The linear transform, introduced by Weyl (1927) has 
the explicit form 

A,(x,p) = dy eip'y 'h(x-fyIAIx+fy).  (4.20) 

Of fundamental interest in the method is Wigner's distribution function f for a canonical 
ensemble having inverse temperature p, 

I 
f(x, p ;  p )  = ( h d  Tr e-PH)-'(e-PH),(x, p ) .  (4.21) 

It readily follows from definition (4.20) that the Hilbert space trace Tr of A is given 
by the phase space integral of A,(x,p). Thus the partition function which is the 
normalising denominator in (4.21) takes the form 

Tr e-PH = h-d [ [ dx dP(e-PH),(x, P) 

so it will be sufficient to consider the Weyl transform of e-PH. 
Since (e-PH), is determined by the heat kernel, which in turn is determined by the 

configuration function F", it is of interest to find a simple formula expressing (e-PH), 
in terms of F". 

Taking A = e-PH in (4.20) and using ( 1 . 3 ~ )  with A t  = hp/i  gives 

where we omit writing p, q in the argument list of F" for brevity. Next, employ the 
identity 

exp(ip.y/h)F" x-- x + -  ( ;y ;) 
=exp(ip.y/h) exp 

= e x p ( r O p * ( V ,  i A  -V2))  exp(ip.y/h)F"(x, x). 

The notation used here is equivalent to writing V I  = V,, , V 2  = V,, then letting these 
gradients act on F"(x, , x2) and finally setting x1 = x2 = x. Placing the above expression 
in (4.20) and taking the derivatives outside the dy integral gives 
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The Gaussian may be brought to the left of the differential operator by using the identity 

exp(a.V,) exp(-pp2/2m) = exp(-pp2/2m) exp(-pp. a / m )  exp(-pa2/2m) 

where a = (ih/2)(V1 -V2) .  This provides us with 

[exp(-PH)lw(x, P) 

=exp(-pp2/2m) exp 

= exp(-pp2/2m) exp Pp. (VI -V2))  exp(h'P 8 m  (VI -V2)2)Fo(~ ,  x). 

The second step used the symmetry F"(x,, x2) = F0(x2, xl), which is a consequence of 
the Hermiticity and reality of the Hamiltonian (1.1). Taking the average of these two 
forms brings us to the desired formula 

= exp(-pp2/2m) 

(4.23 f 

Formula (4.23) shows that the map from F"+ [exp(-PH)Iw can be implemented 
by straightforward differentiation. Furthermore formula (4.23) allows one to transfer 
the series expansion of F" in h2 ,  P or m-' into corresponding series expansions for 
[exp(-PH)],(x, p). This mapping has a practical utility since the various series 
expansions of F" are known in great detail (Fujiwara et a1 1982, Osborn 1984). Note 
that as h + 0 (or m + 03) the limiting value of the factor { } is exp( -Pp(x) ) ,  thus the 
series expansions generated by (4.23) have as their leading term the expression 
exp( -PH,(x ,  p)). Such expansions, derived using recursive methods to determine the 
coefficient functions, are found in Imre et a1 (1967) and Nienhuis (1970). 

Formulae similar to (4.23) exist which map the mixed representation Dirac matrix 
element of exp(-PH) into [exp(-PH)],. Let the functions F* and F# defined in 
(1.36) and ( 1 . 3 ~ )  be extended to the heat kernel form by the substitution A t  + hp/i. 
Proceeding analogously to the derivation of (4.23) we find 

= exp( -: V; Vx)[exp(-pp2/2m)F'( p, x)]. 
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